NQR and DSC Studies on Structural Phase Transitions and Lattice Stability in Some Tetrabromozincate(II) Compounds A₂ZnBr₄

Keizo Horiuchi, Hideta Ishihara^a, Naoko Hatano^a, Syuntaroh Okamoto, and Tohru Gushiken

Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan ^a Faculty of Culture and Education, Saga University, Honjo-machi 1, Saga 840-8502, Japan Reprint requests to Dr. K. H.; E-mail: horiuchi@sci.u-ryukyu.ac.jp

Z. Naturforsch. **57 a,** 425–430 (2002); received January 23, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

The temperature dependence of ⁸¹Br NQR frequencies in some tetrabromozincate(II) compounds, pyridinium tetrabromozincate(II) (pyH₂ZnBr₄, 4-picolinium tetrabromozincate(II) (4-piH)₂ZnBr₄, 2,6-lutidinium tetrabromozincate(II) (2,6-luH)₂ZnBr₄ and guanidinium tetrabromozincate(II) (guH)₂ZnBr₄, were measured between 77 K and temperatures where signals faded out. All compounds exhibited four NQR signals over the whole temperature range investigated. Moreover, DSC was measured between about 130 K and melting points. (4-piH)₂ZnBr₄ and (guH)₂ZnBr₄ showed no structural phase transition, while (pyH)₂ZnBr₄ and (2,6-luH)₂ZnBr₄ showed a single phase transition. The values of transition entropies obtained suggest that these transitions are of the order-disorder type. The nature of these transitions and the lattice stability in the present compounds were discussed.

Key words: NQR; DSC; Phase Transition; Transition Entropy; Tetrabromozincate.